
الإفراط في التكيّف
الإفراط في التكيّف هو مفهوم أساسي في الذكاء الاصطناعي (AI) وتعلم الآلة (ML)، ويحدث عندما يتعلم النموذج بيانات التدريب بشكل مفرط، بما في ذلك الضوضاء، مما يؤدي إل...
الإفراط في التكيّف هو مفهوم أساسي في الذكاء الاصطناعي (AI) وتعلم الآلة (ML)، ويحدث عندما يتعلم النموذج بيانات التدريب بشكل مفرط، بما في ذلك الضوضاء، مما يؤدي إل...
التحقق المتقاطع هو طريقة إحصائية تُستخدم لتقييم ومقارنة نماذج تعلم الآلة من خلال تقسيم البيانات إلى مجموعات تدريب وتحقق عدة مرات، مما يضمن تعميم النماذج بشكل جي...
يشير التنظيم في الذكاء الاصطناعي إلى مجموعة من التقنيات المستخدمة لمنع الإفراط في التخصيص في نماذج التعلم الآلي عن طريق إدخال قيود أثناء التدريب، مما يتيح تعميم...
خطأ التدريب في الذكاء الاصطناعي وتعلم الآلة هو الفرق بين مخرجات النموذج المتوقعة والمخرجات الفعلية أثناء التدريب. يُعد هذا الخطأ مقياسًا رئيسيًا لتقييم أداء الن...