Regularization

アンダーフィッティング
アンダーフィッティング

アンダーフィッティング

アンダーフィッティングは、機械学習モデルが学習データの根本的な傾向を捉えるには単純すぎる場合に発生します。これにより、未知のデータだけでなく訓練データに対してもパフォーマンスが低下し、モデルの複雑性の不足、不十分な訓練、または不適切な特徴選択が原因となることが多いです。...

1 分で読める
AI Machine Learning +3
ドロップアウト
ドロップアウト

ドロップアウト

ドロップアウトはAI、特にニューラルネットワークにおける正則化手法で、トレーニング中にランダムにニューロンを無効化することで過学習を防ぎ、頑健な特徴学習と新しいデータへの汎化能力を向上させます。...

1 分で読める
AI Neural Networks +3
過学習
過学習

過学習

過学習は人工知能(AI)および機械学習(ML)における重要な概念であり、モデルが訓練データを過度に学習し、ノイズまで取り込んでしまうことで新しいデータへの汎化性能が低下する現象です。過学習の特定方法や効果的な防止技術について学びましょう。...

1 分で読める
Overfitting AI +3
正則化
正則化

正則化

人工知能(AI)における正則化とは、機械学習モデルの学習時に制約を導入することで過学習を防ぎ、未知のデータに対する汎化性能を高めるための一連の手法を指します。...

1 分で読める
AI Machine Learning +4