
언더피팅
언더피팅은 머신러닝 모델이 데이터의 근본적인 경향을 포착하기에는 너무 단순할 때 발생합니다. 이로 인해 보이지 않는 데이터와 학습 데이터 모두에서 성능이 저하되며, 이는 주로 모델의 복잡성 부족, 불충분한 학습, 또는 부적절한 피처 선택 때문입니다....
4 분 읽기
AI
Machine Learning
+3
언더피팅은 머신러닝 모델이 데이터의 근본적인 경향을 포착하기에는 너무 단순할 때 발생합니다. 이로 인해 보이지 않는 데이터와 학습 데이터 모두에서 성능이 저하되며, 이는 주로 모델의 복잡성 부족, 불충분한 학습, 또는 부적절한 피처 선택 때문입니다....
전이 학습은 사전 학습된 모델을 새로운 작업에 적용하여, 적은 데이터로도 성능을 향상시키고 이미지 인식, 자연어 처리(NLP) 등 다양한 분야에서 효율성을 높이는 강력한 AI/ML 기법입니다....
지식 컷오프 날짜는 AI 모델이 더 이상 최신 정보를 반영하지 않는 특정 시점을 의미합니다. 이러한 날짜가 왜 중요한지, AI 모델에 어떤 영향을 미치는지, 그리고 GPT-3.5, Bard, Claude 등 주요 모델들의 컷오프 날짜를 확인하세요....
휴먼 인 더 루프(HITL)는 AI 및 머신러닝 접근 방식으로, AI 시스템의 학습, 조정 및 적용 과정에 인간의 전문성을 통합하여 정확성을 높이고 오류를 줄이며 윤리적 준수를 보장합니다....