Overfitting

과적합(Overfitting)
과적합(Overfitting)

과적합(Overfitting)

과적합은 인공지능(AI)과 머신러닝(ML)에서 매우 중요한 개념으로, 모델이 학습 데이터를 지나치게 학습하여 잡음까지 포함하게 되어 새로운 데이터에 대해 일반화 성능이 떨어지는 현상을 말합니다. 과적합을 식별하고 효과적으로 방지하는 다양한 기법을 알아보세요....

2 분 읽기
Overfitting AI +3
교차 검증
교차 검증

교차 검증

교차 검증은 데이터를 여러 번 훈련 세트와 검증 세트로 나누어 머신러닝 모델을 평가하고 비교하는 통계적 방법입니다. 이를 통해 모델이 보이지 않는 데이터에도 잘 일반화되도록 하며 과적합을 방지할 수 있습니다....

4 분 읽기
AI Machine Learning +3
정규화(Regularization)
정규화(Regularization)

정규화(Regularization)

인공지능(AI)에서 정규화는 머신러닝 모델의 학습 과정에 제약을 도입해 과적합을 방지하고, 보지 못한 데이터에 더 잘 일반화할 수 있도록 하는 일련의 기법을 의미합니다....

6 분 읽기
AI Machine Learning +4
학습 오류
학습 오류

학습 오류

AI와 머신러닝에서 학습 오류는 모델이 학습 중 예측한 출력과 실제 출력 간의 차이를 의미합니다. 이는 모델 성능을 평가하는 주요 지표이지만, 과적합 또는 과소적합을 피하기 위해 테스트 오류와 함께 고려해야 합니다....

5 분 읽기
AI Machine Learning +3