
Beslutningstre
Et beslutningstre er et kraftig og intuitivt verktøy for beslutningstaking og prediktiv analyse, brukt både i klassifisering og regresjonsoppgaver. Den treligne...
Et beslutningstre er et kraftig og intuitivt verktøy for beslutningstaking og prediktiv analyse, brukt både i klassifisering og regresjonsoppgaver. Den treligne...
Lær om diskriminative AI-modeller—maskinlæringsmodeller som fokuserer på klassifisering og regresjon ved å modellere beslutningsgrenser mellom klasser. Forstå h...
Gjennomsnittlig absolutt feil (MAE) er en grunnleggende metrikk i maskinlæring for evaluering av regresjonsmodeller. Den måler den gjennomsnittlige størrelsen p...
Gradient Boosting er en kraftig ensemble-teknikk innen maskinlæring for regresjon og klassifisering. Den bygger modeller sekvensielt, vanligvis med beslutningst...
Justert R-kvadrat er et statistisk mål som brukes for å evaluere hvor godt en regresjonsmodell passer dataene, ved å ta hensyn til antall prediktorer for å unng...
K-nærmeste naboer (KNN) er en ikke-parametrisk, veiledet læringsalgoritme som brukes for klassifisering og regresjon i maskinlæring. Algoritmen predikerer utfal...
LightGBM, eller Light Gradient Boosting Machine, er et avansert gradient boosting-rammeverk utviklet av Microsoft. Det er designet for høytytende maskinlæringso...
Lineær regresjon er en grunnleggende analytisk teknikk innen statistikk og maskinlæring, som modellerer forholdet mellom avhengige og uavhengige variabler. Kjen...
Overvåket læring er en grunnleggende tilnærming innen maskinlæring og kunstig intelligens hvor algoritmer lærer fra merkede datasett for å gjøre prediksjoner el...
Overvåket læring er et grunnleggende AI- og maskinlæringskonsept der algoritmer trenes på merkede data for å gjøre nøyaktige prediksjoner eller klassifiseringer...
Random Forest-regresjon er en kraftig maskinlæringsalgoritme som brukes til prediktiv analyse. Den konstruerer flere beslutningstrær og gjennomsnittliggjør dere...