
Diskriminačné modely
Zistite viac o diskriminačných AI modeloch—modeloch strojového učenia zameraných na klasifikáciu a regresiu modelovaním rozhodovacích hraníc medzi triedami. Poc...
Zistite viac o diskriminačných AI modeloch—modeloch strojového učenia zameraných na klasifikáciu a regresiu modelovaním rozhodovacích hraníc medzi triedami. Poc...
Gradient Boosting je výkonná ensemble technika strojového učenia pre regresiu a klasifikáciu. Modely buduje sekvenčne, typicky pomocou rozhodovacích stromov, ab...
Algoritmus k-najbližších susedov (KNN) je neparametrický, supervidovaný učebný algoritmus používaný na klasifikáciu a regresiu v strojovom učení. Predpovedá výs...
LightGBM, alebo Light Gradient Boosting Machine, je pokročilý framework pre gradient boosting vyvinutý spoločnosťou Microsoft. Je navrhnutý pre vysoko výkonné ú...
Lineárna regresia je základná analytická technika v štatistike a strojovom učení, ktorá modeluje vzťah medzi závislými a nezávislými premennými. Je známa svojou...
Priemerná absolútna chyba (MAE) je základná metrika v strojovom učení na hodnotenie regresných modelov. Meria priemernú veľkosť chýb v predikciách, čím poskytuj...
Regresia náhodného lesa je výkonný algoritmus strojového učenia používaný na prediktívnu analytiku. Vytvára viacero rozhodovacích stromov a spriemeruje ich výst...
Rozhodovací strom je výkonný a intuitívny nástroj na rozhodovanie a prediktívnu analýzu, používaný pri klasifikačných aj regresných úlohách. Jeho stromová štruk...
Supervidované učenie je základný prístup v strojovom učení a umelej inteligencii, kde algoritmy sa učia z označených dátových súborov, aby robili predikcie aleb...
Supervidované učenie je základný koncept umelej inteligencie a strojového učenia, pri ktorom sa algoritmy trénujú na označených dátach, aby dokázali presne pred...
Upravené R-kvadrát je štatistická miera používaná na hodnotenie kvality prispôsobenia regresného modelu, pričom zohľadňuje počet prediktorov, aby sa predišlo pr...