
Ayrımsayıcı Modeller
Ayrımsayıcı Yapay Zekâ Modelleri hakkında bilgi edinin—sınıflandırma ve regresyon üzerine odaklanan, sınıflar arasındaki karar sınırlarını modelleyen makine öğr...
Ayrımsayıcı Yapay Zekâ Modelleri hakkında bilgi edinin—sınıflandırma ve regresyon üzerine odaklanan, sınıflar arasındaki karar sınırlarını modelleyen makine öğr...
Denetimli öğrenme, algoritmaların tahmin veya sınıflandırma yapabilmek için etiketli veri kümelerinden öğrendiği makine öğrenmesi ve yapay zekâda temel bir yakl...
Denetimli öğrenme, algoritmaların yeni, görülmemiş veriler üzerinde doğru tahminler veya sınıflandırmalar yapabilmesi için etiketli verilerle eğitildiği temel b...
Doğrusal regresyon, istatistik ve makine öğreniminde bağımlı ve bağımsız değişkenler arasındaki ilişkiyi modelleyen temel bir analiz tekniğidir. Sadelik ve yoru...
Düzeltilmiş R-kare, bir regresyon modelinin uyumunu değerlendirmek için kullanılan istatistiksel bir ölçüdür; modeldeki tahminci sayısını dikkate alarak aşırı u...
k-en yakın komşu (KNN) algoritması, makine öğreniminde sınıflandırma ve regresyon görevlerinde kullanılan parametrik olmayan, denetimli bir öğrenme algoritmasıd...
Gradient Boosting, regresyon ve sınıflandırma için güçlü bir makine öğrenimi topluluk tekniğidir. Modelleri genellikle karar ağaçlarıyla ardışık olarak oluştura...
Karar ağacı, karar verme ve öngörüsel analiz için güçlü ve sezgisel bir araçtır; hem sınıflandırma hem de regresyon görevlerinde kullanılır. Ağaç benzeri yapısı...
LightGBM veya Light Gradient Boosting Machine, Microsoft tarafından geliştirilen gelişmiş bir gradient boosting framework'üdür. Sınıflandırma, sıralama ve regre...
Ortalama Mutlak Hata (MAE), regresyon modellerini değerlendirmek için makine öğreniminde temel bir metriktir. Tahminlerdeki hataların ortalama büyüklüğünü ölçer...
Rastgele Orman Regresyonu, öngörüsel analizlerde kullanılan güçlü bir makine öğrenimi algoritmasıdır. Birden fazla karar ağacı oluşturur ve çıktılarının ortalam...