
Phân Loại Văn Bản
Mở khóa khả năng phân loại văn bản tự động trong quy trình làm việc của bạn với thành phần Phân Loại Văn Bản cho FlowHunt. Dễ dàng phân loại văn bản đầu vào vào...
Mở khóa khả năng phân loại văn bản tự động trong quy trình làm việc của bạn với thành phần Phân Loại Văn Bản cho FlowHunt. Dễ dàng phân loại văn bản đầu vào vào...
Bộ phân loại AI là một thuật toán học máy gán nhãn lớp cho dữ liệu đầu vào, phân loại thông tin vào các lớp đã được xác định trước dựa trên các mẫu đã học từ dữ...
Cây quyết định là một công cụ mạnh mẽ và trực quan để ra quyết định và phân tích dự đoán, được sử dụng trong cả bài toán phân loại và hồi quy. Cấu trúc dạng cây...
Diện Tích Dưới Đường Cong (AUC) là một chỉ số quan trọng trong học máy dùng để đánh giá hiệu quả của các mô hình phân loại nhị phân. AUC định lượng khả năng tổn...
Độ chính xác Top-k là một chỉ số đánh giá trong học máy, xác định xem lớp thực sự có nằm trong số k lớp được dự đoán hàng đầu hay không, cung cấp một thước đo t...
Entropy chéo là một khái niệm then chốt trong cả lý thuyết thông tin và học máy, đóng vai trò là thước đo để đo lường sự khác biệt giữa hai phân phối xác suất. ...
Gradient Boosting là một kỹ thuật học máy mạnh mẽ dùng để tổng hợp các mô hình dự đoán cho bài toán hồi quy và phân loại. Phương pháp này xây dựng các mô hình m...
Hàm mất mát log, hay còn gọi là logarithmic/cross-entropy loss, là một chỉ số quan trọng để đánh giá hiệu suất của mô hình học máy—đặc biệt cho phân loại nhị ph...
Học máy có giám sát là một khái niệm nền tảng trong AI và học máy, nơi các thuật toán được huấn luyện trên dữ liệu đã gắn nhãn để đưa ra dự đoán hoặc phân loại ...
Học máy có giám sát là một phương pháp cơ bản trong học máy và trí tuệ nhân tạo, nơi các thuật toán học từ các tập dữ liệu đã được gán nhãn để đưa ra dự đoán ho...
Thuật toán k-láng giềng gần nhất (KNN) là một thuật toán học máy có giám sát, không tham số, được sử dụng cho các bài toán phân loại và hồi quy trong học máy. T...
LightGBM, hay Light Gradient Boosting Machine, là một framework boosting gradient tiên tiến được phát triển bởi Microsoft. Được thiết kế cho các nhiệm vụ machin...
Ma trận nhầm lẫn là một công cụ trong học máy để đánh giá hiệu suất của các mô hình phân loại, chi tiết số lượng dự đoán đúng/sai của các trường hợp dương/tính ...
Tìm hiểu về Mô Hình AI Phân Biệt—các mô hình học máy tập trung vào phân loại và hồi quy bằng cách mô hình hóa ranh giới quyết định giữa các lớp. Hiểu cách chúng...
Naive Bayes là một họ các thuật toán phân loại dựa trên Định lý Bayes, áp dụng xác suất có điều kiện với giả định đơn giản hóa rằng các đặc trưng là độc lập có ...
Khám phá recall trong học máy: một chỉ số quan trọng để đánh giá hiệu suất mô hình, đặc biệt trong các bài toán phân loại nơi việc xác định chính xác các trường...