Questions de suivi

Générez automatiquement des questions de suivi ciblées à l’aide de l’IA et du contexte du chat pour guider des conversations plus profondes et plus pertinentes.

Questions de suivi

Description du composant

Comment fonctionne le composant Questions de suivi

Followup Questions Component

The Followup Questions component is designed to help users generate insightful follow-up questions based on a provided context, answer, and conversation history. This functionality is especially valuable in AI-driven workflows where deepening understanding of a topic or clarifying ambiguities is important—such as in chatbots, tutoring systems, or knowledge exploration tools.

What Does the Component Do?

This component takes an input text (typically a user’s question or statement), and, using a language model, generates a list of follow-up questions that the user should ask to gain a deeper or clearer understanding of the topic. It can leverage additional information like the current chat history, context, and previous answers to generate more precise and relevant questions.

Inputs

The component supports several input fields, some optional and some required. Here’s an overview:

Input NameTypeRequiredDescription
Input TextString (Message)YesThe main text input (user query or statement) to base follow-up questions on.
Chat HistoryInMemoryChatMessageHistoryNoThe conversation history, which helps the model generate better-targeted follow-up questions.
LLMBaseChatModelNoThe language model to use for question generation.
AnswerString (Message)NoThe answer to the input text, which can help improve the relevance of the follow-up questions.
ContextString (Message)NoAdditional context to generate more focused questions.
Number of questionsIntegerYesSpecifies how many follow-up questions to generate. Default is 5.
System MessageStringNoAn optional system-level message to modify or steer the prompt sent to the language model.

Outputs

  • Message:
    The output of this component is a message (or collection of messages) containing the generated follow-up questions.

Why Is This Useful?

  • Enhance User Engagement: By suggesting relevant follow-up questions, this component helps users dig deeper into topics and discover information they might not have considered.
  • Improve Conversational Flows: In chatbots or virtual assistants, it prompts users to clarify or expand on their queries, making interactions more dynamic and informative.
  • Support Learning and Research: In educational or research settings, it can guide learners or researchers to ask better questions, leading to improved comprehension and critical thinking.
  • Personalization: By considering chat history and context, the questions are tailored and contextualized, increasing their usefulness and precision.

Example Use Cases

  • Customer Support Bots: Automatically suggest helpful follow-up questions to customers based on their previous queries and responses.
  • Educational Tutors: Help students by prompting them with additional questions to ensure they understand the material.
  • Knowledge Management: Guide users in knowledge bases or research environments to ask productive questions.

Summary Table

FeatureBenefit
Context-awareGenerates more relevant questions
Model-agnosticCan work with different LLMs
Customizable outputControl over number and style of questions
History integrationTakes prior conversation into account

By integrating the Followup Questions component, you can make your AI-driven workflows more interactive, informative, and user-friendly.

Questions fréquemment posées

Que fait le composant Questions de suivi ?

Il génère des questions de suivi pertinentes en fonction de la saisie de l'utilisateur, du contexte et de l'historique du chat, aidant les utilisateurs à explorer les sujets plus en profondeur.

Puis-je contrôler le nombre de questions générées ?

Oui, vous pouvez définir le nombre de questions de suivi générées selon vos besoins.

Est-ce qu'il utilise l'historique du chat précédent ?

Oui, l'intégration de l'historique du chat permet au composant de créer des questions de suivi plus précises et contextuelles.

Quels modèles d'IA peuvent être utilisés avec ce composant ?

Vous pouvez connecter tout LLM (Large Language Model) pris en charge dans FlowHunt pour la génération de questions.

Dans quels scénarios dois-je utiliser le composant Questions de suivi ?

Utilisez-le dans des flux où vous souhaitez guider les utilisateurs vers une compréhension approfondie ou des questions supplémentaires, comme des assistants de recherche, des bots de support client ou des chatbots éducatifs.

Essayez les Questions de suivi FlowHunt

Améliorez vos flux IA en ajoutant la génération dynamique de questions de suivi pour des conversations plus intelligentes et engageantes.

En savoir plus

Entrée de Chat
Entrée de Chat

Entrée de Chat

Le composant Entrée de Chat dans FlowHunt initie les interactions utilisateur en capturant les messages depuis le Playground. Il sert de point de départ pour le...

2 min de lecture
AI Chatbot +3
Générateur
Générateur

Générateur

Découvrez le composant Générateur dans FlowHunt : une génération de texte puissante pilotée par l’IA utilisant le modèle LLM de votre choix. Créez facilement de...

2 min de lecture
AI Automation +4
Agent d’Appel d’Outils
Agent d’Appel d’Outils

Agent d’Appel d’Outils

Découvrez l’Agent d’Appel d’Outils dans FlowHunt — un composant de workflow avancé qui permet aux agents IA de sélectionner et d’utiliser intelligemment des out...

3 min de lecture
AI Agent +3