Drzewo decyzyjne
Drzewo decyzyjne to algorytm uczenia nadzorowanego używany do podejmowania decyzji lub przewidywań na podstawie danych wejściowych. Przedstawia się je jako stru...
Poznaj najlepsze praktyki łączenia TDD z agentami kodującymi AI, takimi jak Windsurf i Claude 3.5 Sonnet, aby zautomatyzować i usprawnić proces wytwarzania oprogramowania.
U podstaw TDD leży cykliczny proces znany jako Red-Green-Refactor. Cykl zaczyna się od fazy „Red”, w której programista pisze automatyczny przypadek testowy definiujący pożądaną funkcjonalność lub zachowanie. Test ten jest celowo na początku nieprzechodzący, ponieważ odpowiadający mu kod jeszcze nie istnieje. Ta początkowa porażka jest kluczowa, ponieważ zapewnia, że test faktycznie sprawdza zamierzoną funkcjonalność i będzie wyłapywał błędy po implementacji kodu.
Następna faza to „Green”, czyli napisanie minimalnej ilości kodu niezbędnej, aby wcześniej nieprzechodzący test przeszedł. Ta zasada zachęca programistów do skupienia się na bezpośrednim wymaganiu określonym przez test, utrzymania czystości kodu i unikania nadmiarowej inżynierii.
Ostatnia faza, „Refactor”, koncentruje się na poprawie struktury, czytelności i łatwości utrzymania zarówno kodu testowego, jak i produkcyjnego, przy jednoczesnym zapewnieniu, że wszystkie istniejące testy nadal przechodzą. Refaktoryzacja pozwala utrzymać zdrową i elastyczną bazę kodu, gotową na przyszłe zmiany bez wprowadzania regresji, a istniejący zestaw testów stanowi zabezpieczenie w tym procesie.
Na wydajność agentów AI podczas kodowania wpływa wiele czynników – od wybranego modelu LLM po sposób organizacji kodu i pipeline’u deweloperskiego. Zauważyliśmy, że TDD jest skuteczne w połączeniu z Windsurf i Claude 3.5 sonnet. Oto przykładowe zadanie zrealizowane w TDD.
Zanim zaczniemy kodować, potrzebujemy następujących elementów:
Upewnij się, że masz już testy zgodnie z TDD i obejmują one większość zakresu Twojego problemu, który uznajesz za logiczny i pomocny dla agenta AI. Nie musisz nic zmieniać ani dostosowywać specjalnie pod agenta AI. Jeśli Twoje testy i ich nazewnictwo są oparte na standardzie, to jeszcze lepiej. W pierwszym kroku agent AI zobaczy te testy i na ich podstawie rozpocznie implementację.
Oto przykład testu, który sprawdza, czy dokument został poprawnie wstawiony do MongoDB:
Interfejs w Javie (lub innym języku programowania) to struktura określająca, jak powinny wyglądać klasy i jakie metody muszą implementować. Aby jeszcze lepiej poprowadzić agenta AI, warto utworzyć interfejs repozytorium do wstawiania dokumentów:
Na końcu potrzebujemy konkretnego opisu zadania. Zwykle możesz użyć JIRA lub zgłoszenia na GitHubie, gdzie opisujesz zadanie. Oto nasz przykład:
Vibe coding oznacza, że opisujesz to, czego potrzebujesz, w prostym języku angielskim (lub nawet komendami głosowymi), a AI generuje dla Ciebie kod w czasie rzeczywistym. Szczegóły dotyczące Vibe Coding omawiamy w tym wpisie na blogu. Oto prompt, którego użyłem w Windsurf do realizacji zadania:
Zaimplementuj poniższe zapytanie jako kombinację jednego lub więcej zapytań nazwanych oraz kodu Java.
Znajdź wszystkich kierowców, którzy ukończyli co najmniej X kursów z oceną powyżej 5 w określonym przedziale dat i nigdy nie otrzymali oceny poniżej 3 gwiazdek.
Uwaga:
Nie musisz tworzyć jednego zapytania, które rozwiąże to zadanie (możesz użyć kombinacji kodu Java i zapytań nazwanych), ale musisz pamiętać o wydajności ORM, tzn. rozwiązanie powinno być odpowiednio szybkie przy dużej liczbie encji. Podczas sesji dyskusyjnej powinieneś być w stanie wyjaśnić, jakie problemy mogą pojawić się przy źle napisanych zapytaniach.
@Ass1_2_2Test.java#L35-60
to są odpowiadające testy. Zaimplementowano w@DriverDAO.java#L34-63
Wskazanie plików jest najważniejszym aspektem podczas vibe codingu. Teraz możesz usiąść wygodnie i obserwować, jak agent AI wykonuje swoją magię. Zaimplementował klasę, uruchomił testy i powtarzał proces, aż testy przeszły:
Test Driven Development (TDD) to podejście do rozwoju oprogramowania, w którym najpierw pisze się automatyczne testy przed właściwym kodem. Proces przebiega w cyklu Red-Green-Refactor: napisanie testu, który nie przechodzi (Red), implementacja kodu, aby test przeszedł (Green), a następnie refaktoryzacja kodu przy zachowaniu wszystkich przechodzących testów.
Agenci AI, tacy jak Windsurf, zwłaszcza w połączeniu z modelami takimi jak Claude 3.5 Sonnet, mogą automatyzować generowanie kodu, uruchamiać testy i wykonywać iteracyjne ulepszenia, dzięki czemu proces TDD jest szybszy i bardziej wydajny.
Aby zautomatyzować TDD z agentami AI, potrzebujesz kompletnego zestawu testów, jasno zdefiniowanych interfejsów oraz precyzyjnych opisów zadań. Ustandaryzowane nazewnictwo testów i przejrzysta dokumentacja pomagają poprowadzić agenta AI do osiągnięcia optymalnych rezultatów.
Vibe Coding to podejście wspomagane przez AI, w którym programista opisuje wymagania w prostym języku angielskim (lub głosowo), a AI generuje kod w czasie rzeczywistym, iterując, aż wszystkie testy przejdą, a rozwiązanie spełni wymagania.
Yasha jest utalentowanym programistą specjalizującym się w Pythonie, Javie i uczeniu maszynowym. Yasha pisze artykuły techniczne o AI, inżynierii promptów i tworzeniu chatbotów.
Dowiedz się, jak inżynierowie przepływów AI i agenci kodujący FlowHunt mogą zautomatyzować Twój proces wytwarzania oprogramowania dla maksymalnej wydajności i innowacyjności.
Drzewo decyzyjne to algorytm uczenia nadzorowanego używany do podejmowania decyzji lub przewidywań na podstawie danych wejściowych. Przedstawia się je jako stru...
Test Turinga to fundamentalna koncepcja w sztucznej inteligencji, zaprojektowana do oceny, czy maszyna potrafi wykazać zachowanie inteligentne nieodróżnialne od...
Drzewo decyzyjne to potężne i intuicyjne narzędzie do podejmowania decyzji i analizy predykcyjnej, stosowane zarówno w zadaniach klasyfikacji, jak i regresji. J...